The Effect of Temperature on Selectivity in the Oscillatory Mode of the Phenylacetylene Oxidative Carbonylation Reaction
نویسندگان
چکیده
Reaction temperature plays a major role in product selectivity in the oscillatory mode of the palladium-catalyzed phenylacetylene oxidative carbonylation reaction. At 40 °C, dimethyl (2Z)-2-phenyl-2-butenedioate is the major product whereas at 0 °C the major product is 5,5-dimethoxy-3-phenyl-2(5H)-furanone. The occurrence of oscillations in pH coincides with an increase in the rate of phenylacetylene consumption and associated product formation. Experiments were performed isothermally in a reaction calorimeter to correlate reactant consumption and product formation with the occurrence of pH oscillations and the heat released by the reaction. An increase in the size of the pH drop in a single oscillation correlates with an increase in energy, indicating that this section of a single oscillation relates to reactant consumption. Based on these observations, a reaction pathway responsible for product formation is provided.
منابع مشابه
Achieving pH and Qr Oscillations in a Palladium Catalysed Phenylacetylene Oxidative Carbonylation Reaction Using an Automated Reactor System
This letter reports an experimental study which achieves reproducible oscillations in both pH and heat output (Qr) during a palladium-catalysed phenylacetylene oxidative carbonylation reaction in an homogeneous catalytic system (PdI2-KI-Air-NaOAc in methanol solution). Experiments were performed in an HEL SIMULAR reaction calorimeter with precise control of temperature and gas flow rates. Under...
متن کاملOxidative Coupling of Methane to Ethylene Over Sodium Promoted Manganese Oxide
Manganese oxide catalyst promoted with sodium and supported on silica exhibits fairly good activity and selectivity towards the synthesis of ethylene from methane at the optimum operating conditions. Methane and oxygen were fed into a tubular fixed bed reactor packed with catalyst under atmospheric pressure. The effects of temperature, residence time and feed composition on conversion, selectiv...
متن کاملAn Experimental Design Study for CH4, C2H6 and C2H4 Adsorption and C2s/CH4 Selectivity on 10X Zeolite
CH4, C2H6 and C2H4 are the most important outlet gaseous of oxidative couple methane (OCM) reaction and this process is a new technology for conversion of natural gas to ethane and ethylene products. In this study, adsorption of OCM outlet hydrocarbons over 10X zeolite has been examined at equilibrium conditions. Temperature and pressure are the most effective operational parameters in the batc...
متن کاملAPPLICATION OF ADAPTIVE NEURO FUZZY INFERENCE SYSTEM TO MODELING OXIDATIVE COUPLING OF METHANE REACTION AT ELEVATED PRESSURE
The oxidative coupling of methane (OCM) performance over Na-W-Mn/SiO2 at elevated pressures has been simulated by adaptive neuro fuzzy inference system (ANFIS) using reaction data gathered in an isothermal fixed bed microreactor. In the designed neuro fuzzy models, three important parameters such as methane to oxygen ratio, gas hourly space velocity (GHSV), and reaction temperature were conside...
متن کاملEffect of Additives on Mn/SiO2 Based Catalysts on Oxidative Coupling of Methane
The Oxidative Coupling of Methane (OCM) over M-Na-Mn/SiO2 catalysts (M=W, Cr, Nb and V) was investigated using a continuous-flow quartz reactor at 775°C, 1 atm and 100 cm3min-1 gas flow rates, and correlated with the observed structure and redox properties.The interaction effects of the metal-metal and metal-support on the...
متن کامل